第6節 非常警報設備(放送設備)

第1 用語の意義

この節において、次に掲げる用語の意義は、それぞれ当該各項に定めるところによる。

- 1 放送設備とは、起動装置、表示灯、スピーカー、増幅器、操作部、電源及び配線により構成されたもの(自動火災報知設備と連動するものにあっては、起動装置及び表示灯を省略したものを含む)をいう。
- 2 増幅器等とは、増幅器及び操作部をいい、起動装置又は自動火災報知設備から火災である旨の信号を受信し、スイッチ等を自動的に又は手動により操作して、音声警報による感知器発報放送、火災放送、非火災放送若しくはマイクロホン放送をスピーカーを通じて有効な音量で必要な階に放送できるものをいう。
- 3 分割型増幅器とは、増幅器と操作部を分離して設置する機器をいう。
- 4 遠隔操作器とは、防火対象物の使用形態により、放送場所が複数となる場所に使用できる単独の操作部をいう。
- 5 非常電話とは、起動装置として用いる専用電話をいい、親機、子機、表示灯、電源及 び配線により構成されたものをいう。
- 6 感知器発報放送とは、感知器が発報した場合又はこれに準ずる情報を入手した場合に 行う放送で、音声警報音のうち、第1シグナル音及び自動火災報知設備の感知器が作動し た旨の女声メッセージにより構成されたものをいう。
- 7 火災放送とは、火災の発生が確認された場合又はこれに準ずる情報を入手した場合に 行う放送で、音声警報音のうち、第1シグナル音、火災である旨の男声メッセージ及び第 2シグナル音で構成されたものをいう。
- 8 非火災報放送とは、火災の発生がないことが確認された場合に行う放送で、音声警報音のうち、第1シグナル音及び自動火災報知設備の感知器の発報は火災ではなかった旨の 女声メッセージで構成されたものをいう。
- 9 居室等とは、建築物において、階段、傾斜路、エレベーター昇降路その他これらに類するたて穴部分以外の部分をいう。

第2機器

非常電話は、非常警報設備の基準(昭和48年消防庁告示第6号)のほか、次に適合する ものとする。

- (1) 子機は、送受器を取り上げることにより自動的に親機への発信が可能なものであること。
- (2) 子機は、放送機能を有しないこと。
- (3) 親機は、子機の発信により発信階表示灯が点灯するものであること。

- (4) 子機の回線が短絡又は断線しても他の回線に障害が波及しないものであること。
- (5) 非常電話は、2回線を同時に作動させることができるものであること。
- (6) 親機と増幅器等との連動方式は、無電圧メーク接点により、相互の機能に異状を生じないものであること。

第3 設置場所及び設置方法

設置場所及び設置方法は、令第24条第4項及び規則第25条の2第2項第2号から第6号までによるほか、次による。

1 増幅器等

(1) 設置場所

- ア 増幅器等は、避難階、その直上階又は直下階に設けること。ただし、壁、床及び 天井を不燃材料とし、開口部に防火戸を設け、かつ、安全に避難できる場所に設置 する場合は、この限りでない。
- イ 分割型増幅器等の増幅器及び操作部は、同一室内に設けること。
- ウ 温度若しくは湿度が高い場所又は衝撃、震動等が激しい場所その他増幅器等の機 能に影響を与える場所には設けないこと。
- エ 操作上障害とならないよう自動火災報知設備の基準(図2-1-1)の例により 有効な空間を確保すること。

(2) 設置方法

- ア 増築等が予想される場合は、増幅器等に余裕回線を残しておくこと。
- イ 自動火災報知設備が設置されている場合、令第24条第3項に掲げる防火対象物にあっては、放送設備に起動装置を設ける場合にあっても自動火災報知設備と連動させること。
- ウ 自動火災報知設備と連動する場合は、無電圧メーク接点により相互の機能に異状 を生じないものであること。
- エ 増幅器の出力とスピーカー等の合成インピーダンスは、次式Aを満足し整合(インピーダンスマッチング)したものであること。ただし、増幅器の定格出力時の音声信号電圧が100ボルトに統一されたものは、次式Bによることができる。

A 算定式

P:増幅器の定格出力(ワット)

E: スピーカーの回路電圧(ボルト)

Z₀: スピーカー等の合成インピーダンス (オーム)

Zoの求め方

ア スピーカー等が並列接続の場合

$$Z_0 = \frac{1}{\frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} + \dots + \frac{1}{z_n}}$$

Z₁~Z_n:スピーカー等のインピーダンス (オーム)

イ スピーカー等が直列接続の場合

 $Z_0 = Z_1 + Z_2 + Z_3 + \cdots + Z_n$

B 算定式

P≧S

P: 増幅器の定格出力(ワット)

S:スピーカーの定格入力の合計(ワット)

オ 警報音の鳴動方式は、次によること。

(ア) 自動火災報知設備と連動する場合

- A 出火階が2階以上の場合にあっては出火階及びその直上階、出火階が1階の場合にあっては出火階、その直上階及び地階、出火階が地階の場合にあっては出火階、その直上階及びその他の地階全部に限って放送することができるものであること。
- B 階段、傾斜路、エレベーター昇降路その他これらに類するたて穴部分に設置された感知器(エレベーター機械室に設けられる感知器で、エレベーター昇降路を警戒するものを含む。)が作動した場合は、前Aによらず当該部分が鳴動すること。
- (イ) 操作部の各スイッチの手動操作による場合
 - A 一斉スイッチを操作することにより、全館に放送できること。
 - B 放送階選択スイッチを操作することにより、任意の階又は部分に放送できる こと。
- カ 1の防火対象物において業務用の放送設備が独立して設けられている場合にあっては、火災の際業務用の放送は遮断するものとすること。ただし、放送設備の警報音が有効に聞こえる場合はこの限りでない。
- キ 地震等の震動による障害がないように堅ろうに、かつ、傾きのないように設置すること。
- ク 規則第25条の2第2項第3号ヲに規定する「操作部又は遠隔操作器のある場所相互間で、同時に通話することができる設備」とは、自動火災報知設備の基準(第3.4)に

適合するものであること。

- ケ 放送階選択スイッチの部分には、当該スイッチの操作により警報を発する階又は 部分の名称が適正に記入されていること。
- コ 2. (3). イ、ウ、エ及び同(6)により、スピーカーの回線が階ごとに設けられていないものにあっては、操作部の付近に警報を発する階又は部分の一覧図を備えること。
- サ 自動火災報知設備が設置されている防火対象物にあっては、放送設備のマイクス イッチを入れることにより自動火災報知設備の地区音響装置の鳴動が停止し、また、 マイクスイッチを切ることにより再び地区音響装置が鳴動すること。
- シ 感知器発報放送が起動してからタイマーの遅延により火災放送を開始するまでの時間は、原則として、防火対象物全体にスプリンクラー設備が設置されている場合は5分以内とし、それ以外の場合は3分以内とすること。
- ス 音声警報メッセージは、次によること。
- (ア) メッセージは次の文例又はこれに準ずるものとすること。

A 感知器発報放送

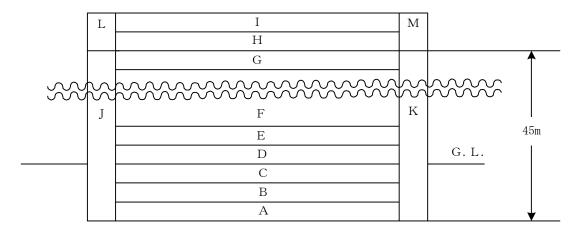
「ただいま〇階の火災感知器が作動しました。係員が確認しておりますので、 次の放送にご注意下さい。」

B 火災放送

「火事です。火事です。○階で火災が発生しました。落ち着いて避難して下さい。」

C 非火災報放送

「さきほどの火災感知器の作動は、確認の結果、異常がありませんでした。ご安心下さい。」


- (イ) メッセージに外国語を使用する場合は、日本語メッセージの後に外国語メッセージを追加放送すること。
- (ウ) 放送設備が階段、傾斜路、エレベーター昇降路その他これらに類するたて穴部分の感知器(エレベーター機械室に設けられる感知器で、エレベーター昇降路を警戒するものを含む。)の作動により起動した場合又は手動により起動した場合は、火災が発生した場所に係るメッセージを入れなくても差し支えないものとする。

2 スピーカー

- (1) 音響効果を妨げる障害物がない場所に設けること。
- (2) 温度又は湿度が高い場所に設けるスピーカーは、使用場所に適応したものであること。

- (3) スピーカー回線は、次によること。
 - ア 階ごとに1の回線とすること。
 - イ 劇場等で階の一部が吹抜けになっており、天井又は壁面に取り付けたスピーカー により、有効な音量が得られる場合、当該部分を1の回線とすることができる。
 - ウ 広大な面積を有する防火対象物にあっては、当該階の床面積1,200平方メートル以上の部分ごとに1の回線とすることができる。ただし、自動火災報知設備と連動する場合は、隣接する部分にも同時に警報を発することができるものとすること。
 - エ 特別避難階段又は屋内避難階段(以下「特別避難階段等」という。)は、居室等と別の回線とし、かつ、最下階を基準として垂直距離45メートルごとに1の回線とすること。なお、自動火災報知設備と連動して起動するもののうち、特別避難階段等以外の感知器の作動と連動するものにあっては、図2-6-1の例により当該放送区域に接する特別避難階段等の放送区域及びその直上の放送区域を鳴動させること。

図2-6-1 特別避難階段等の放送区域

出火階	同一鳴動区域
A	А, В, С, Ј, К
В	A, B, C, J, K
С	A, B, C, D, J, K
D	A, B, C, D, E, J, K
Е	E, F, J, K
G	G, H, J, K, L, M
Н	H, I, L, M
I	I, L, M

* J、K、L、Mは、特別避難階段等の放送区域

- (4) 屋上部分を不特定多数の者が出入りする遊技場等の目的に使用する場合は、当該部分を1の回線とすること。
- (5) 音量調整器をスピーカーの内部に設ける場合又は人が容易に操作できない場所に設ける場合で、音圧が規則第25条の2第2項第3号イ又はハ(イ)で定める音圧以上となるように調整されているものにあっては、同号二の規定にかかわらず3線式配線としないことができる。
- (6) エレベーターの設置されている防火対象物にあっては、居室等と別の回線として、 エレベーターのかご内にスピーカーを設けること。なお、自動火災報知設備と連動し て起動するものにあっては、1. (2) . オ. (ア). Bによるほか、エレベーターの停止 階のすべての放送区域に設けられた感知器の作動と連動するものとすること。
- (7) 規則第25条の2第2項第3号ロ.(イ)に定める放送区域を形成する部屋の間仕切壁については、音の伝達に十分な開口部があるものを除き、固定式か移動式かにかかわらず、壁として取り扱うものとする。また、「障子、ふすま等の遮音性能の著しく低いもの」とは、障子、ふすまのほか、カーテン(アコーディオンカーテンを除く。)、つい立て、すだれ、格子戸又はこれらに類するものとする。
- (8) 規則第25条の2第2項第3号ロ.(ロ)ただし書きを適用する場合、スピーカーが設置されない放送区域が存する場合は、スピーカーが受け持つ放送区域の合計面積を算定したうえで、当該面積に対応する種類のスピーカーを設置すること。ただし、カラオケボックス、カラオケルーム等の遮音性の高い室等にあっては、当該室等を1の放送区域としてスピーカーを設置すること。
- (9) 規則第25条の2第2項第3号への規定によりスピーカーを設ける場合は、別記1「放送設備のスピーカーの性能に応じた設置ガイドライン」によること。
- 3 起動装置
- (1) 発信機及び押ボタン 非常警報設備(非常ベル又は自動式サイレン)の基準(第2.3)を準用すること。
- (2) 非常電話
 - ア 子機は、廊下、階段、出入口付近その他多数の目にふれやすい場所で、かつ、容 易に操作できる場所に設けること。
 - イ 親機からの呼び出し機能のない子機にあっては、放送設備等により有効に呼び出 すことができる位置に設けること。
 - ウ 親機は、増幅器等及び自動火災報知設備の受信機と同一の場所に設けること。
 - エ 制御部と操作部が分割された親機は、原則として同一室内に設けること。
 - オ 親機の選択スイッチの部分には、子機の設置階の名称を適正に記入すること。
 - カ 子機は、厚さ0.8ミリメートル以上の鋼板又はこれと同等以上の箱に収納し、その

表面又は付近に赤地に白文字で「非常電話」と表示すること。なお、文字の大きさは2センチメートル角以上とすること。

4 表示灯

非常警報設備(非常ベル又は自動式サイレン)の基準(第2.4)を準用する。

第4 電源及び配線

電源及び配線は、令第24条第4項第3号並びに規則第25条の2第2項第4号及び第5号並びに第6章「非常電源の基準」によるほか、次による。

1 常用電源

電源は、規則第25条の2第2項第4号ホの規定にかかわらず、放送設備に障害をおよぼす おそれがない場合、他の消防用設備の電源と共用することができるほか、卓上型増幅器 等にあっては、専用の抜け止めコンセントから電源をとることとしてさしつかえない。

2 配線

マイク回路の配線で増幅器等と遠隔操作器との間のマイク回路に使用する電線は、60 0ボルト二種ビニル絶縁電線又はこれと同等以上のものを使用すること。ただし、スピーカー配線等からの誘導障害、外来雑音等が生じるおそれのある場合は、耐熱シールド線を使用すること。なお、遠隔操作器の出力回路が平衡形の場合は2芯シールド線を使用し、不平衡形の場合は単芯シールド線を使用するものとする。

第5 総合操作盤

総合操作盤は、第7章「総合操作盤の基準」による。

第6 特例基準

非常警報設備(放送設備)を設置しなければならない防火対象物又はその部分のうち、 次のいずれかに該当するものについては、令第32条の規定を適用し、それぞれ当該各項 に定めるところによるものとする。

- 1 令別表第1に掲げるいずれの防火対象物にあっても、住戸部分については住戸内の戸等 の設置にかかわらず、各住戸(メゾネット型住戸等の2以上の階にまたがるものについて は各住戸の各階ごとの部分)を1の放送区域として取り扱うことができる。
- 2 操作部又は遠隔操作器(以下「遠隔操作器等」という。)が2以上設けられ、全区域に 火災を報知することができる遠隔操作器等が1以上防災センター等に設けられている防 火対象物においては、次の場合、規則第25条の2第2項第3号ヲの規定にかかわらず、遠隔 操作器等から報知できる区域を防火対象物の全区域としないことができる。ただし、遠 隔操作器等設置場所に放送区域の一覧図を備えること。

- (1) 管理区分又は用途が異なる1の防火対象物で、遠隔操作器等から遠隔操作器等が設けられた管理区分の部分又は用途の部分全体に火災を報知することができるよう措置された場合
- (2) 防火対象物の構造、使用形態等から判断して、火災発生時の避難が防火対象物の部分でとに独立して行われると考えられる場合であって、独立した部分に設けられた遠隔操作器等が独立した部分全体に火災を報知することができるよう措置された場合
- (3) ナースステーションに遠隔操作器を設けて病室の入院患者の避難誘導を行うこととしている等のように、防火対象物の一定場所のみを避難誘導の対象とすることが適切と考えられる場合であって、避難誘導の対象場所全体に火災を報知することができるよう措置された場合

第1 趣旨

放送設備は、音声による的確な情報提供を行うことにより、火災時におけるパニック 防止や円滑な避難誘導等を図ることを目的として、不特定多数の者が存する防火対象物 等に設置が義務づけられているものである。

放送設備のスピーカーについては、警報内容の確実な伝達を確保するため、消防法施行規則(以下「規則」という)第25条の2第2項第3号において設置方法が規定されており、スピーカーの仕様や設置間隔を具体的に定めた同号イ及びロと、警報内容の伝達に必要な音量や明瞭度の判断基準を定めた同号へのいずれかを選択できることとされている。また、同号イ及びロの規定に基づく設置方法については、「放送設備の設置に係る技術上の基準の運用について」(平成6年2月1日付け消防予第22号)等により、従前から運用されているところである。このガイドラインは、放送設備のスピーカーの性能に応じた設置方法について円滑な運用を図るため、規則第25条の2第2項第3号への規定に基づき放送設備のスピーカーを設置する場合の技術基準の運用及び具体的な設置例についてとりまとめたものである。

第2 技術基準の運用について

規則第25条の2第2項第3号ハの規定に基づく放送設備のスピーカーの設置に係る技術上の基準については、次により運用するものとする。

1 用語の意義等について

用語の意義等については、規則及び非常警報設備の基準(昭和48年消防庁告示第6号。 以下「告示」という。)の規定によるほか、次によること。

(1) 音圧レベル

ア意義

音圧レベルとは、音波の存在によって生じる媒質(空気)中の圧力の変動分(音圧)の大きさを表す量で、一般的に次式により定義されること。

Pは、音圧レベル(単位 デシベル)

P'は、音圧の実効値(単位 パスカル)

 P_{\circ} は、基準の音圧 (=20×10⁻⁶パスカル)

イ 運用

音圧レベルは、第2シグナルのうち第3音を入力した時点の値(=騒音計で測定した場合の最大値)によること。

(2) 音響パワーレベル

ア意義

音響パワーレベルとは、音源(スピーカー等)が空間内に放射する全音響パワー (音響出力)、すなわち1秒あたりに放射する音響エネルギーの大きさを表す量で、 一般的に次式により定義されること。

Pは、音響パワーレベル(単位 デシベル)

Wは、音源の音響パワー(単位 ワット)

 W_0 は、基準の音響パワー (= 1×10^{-12} ワット)

音響パワーレベルと音圧レベルは、音源からの放射音の表示量として用いられる 点において同様であるが、音圧レベルが音源の性状のほか、測定位置等により変化 するものであるのに対し、音響パワーレベルは原理的に音源の性状のみに依存する 点において異なるものであること。また、音響パワーレベルは、一般的に「パワーレ ベル」や「音響出力レベル」とも表現されること。

イ 運用

音響パワーレベルの測定方法は、告示第4第6号(一)ロの規定により、第2シグナルを定格電圧で入力してJISZ8732 (無響室又は半無響室における音響パワーレベル測定方法)又はJISZ8734 (残響室における音響パワーレベル測定方法)の例により測定することとされているが、その具体的な取扱いは次によること。

- (ア) スピーカーの音響パワーレベルは、第2シグナルのうち第3音を入力した時点の 値に相当する値によること。
- (イ) 測定に当たっては、第2シグナルを30秒間以上入力すること。この場合において、第2シグナルは下図のような波形を有するものであることから、当該測定値に次式による補正を加えた値をもって、スピーカーの音響パワーレベルとして取り扱うこと。

p = pm + 4

pは、スピーカーの音響パワーレベル(単位 デシベル)

pmは、JISZ8732又はJISZ8734の例による測定値(単位 デシベル)

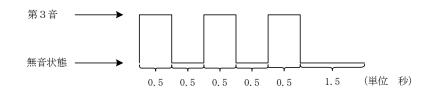


図 第2シグナルの波形

(ウ) JISZ8732又はJISZ8734と同等以上の精度を有する測定方法についても、音響パワーレベルの測定方法として認めてさしつかえないこと。

(3) スピーカーの指向係数

ア意義

スピーカーの指向係数とは、スピーカーの指向特性を表す数値で、一般的に次式により定義されるものであること。

Qは、スピーカーの指向係数

I dは、スピーカーからの距離dの点における直接音の強さ

Ioは、スピーカーからの距離dの位置における直接音の強さの全方向の平均値

イ 運用

スピーカーの指向係数は、スピーカーの基準軸(スピーカーの開口面の中心を通る開口面に垂直な直線をいう。)からの角度に応じた値とすること。また、一般的に用いられているタイプのスピーカーにあっては、その指向特性区分に応じ、次表に掲げる値とすることができること。

該 当 す る-		指向係数				
指向特性区分	スピーカータイプ	0°以上	15°以上	30°以上	60°以上	
		15°未満	30° 未満	60° 未満	90° 未満	
W	コーン型スピーカー	5	5	3	0.8	
M	ホーン型コーンスピー カー又は、口径が200 ミリ以下のホーンスピ ーカー	10	3	1	0. 5	
N	口径が200ミリを超え るホーンスピーカー	20	4	0.5	0.3	

(4) 当該箇所からスピーカーまでの距離

ア意義

当該箇所からスピーカーまでの距離とは、放送区域の床面からの高さが1メートルの箇所からスピーカーの基準点までの直線距離をいい、スピーカーからの放送を受聴する代表的な位置を意味するものであること。

イ 運用

当該箇所からスピーカーまでの距離を算定するにあたり、消防法施行令第32条の 規定を適用して、次により取扱うこととしてさしつかえないこと。

- (ア) 放送区域の構造、設備、使用状況等から判断して、スピーカーからの放送を受聴する位置が「床面からの高さが1メートルの箇所」と異なる部分にあっては、実際に受聴する位置からスピーカーまでの距離により算定することができること。
- (イ) 放送区域の構造、設備、使用状況等から判断して、スピーカーからの放送を受聴する可能性のない放送区域の部分(人の立入る可能性の全くない部分)にあっては、規則第25条の2第2項第3号ハ(イ)及び(ロ)の規定による音量及び明瞭度を確保しないことができること。

(5) 放送区域の平均吸音率

ア意義

放送区域の平均吸音率とは、放送区域に音波が入射した場合において、その壁、床、 天井等が吸収又は透過する音響エネルギーと入射した全音響エネルギーの比の平均 値をいうこと。

イ運用

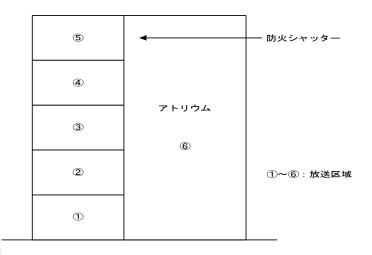
放送区域の平均吸音率は、厳密には放送区域の区画の構造、使用されている個々の内装材、収納物等の種類(吸音率)及び面積、入射音の周波数等により異なる値をとるものであるが、次により取り扱うこと。

- (ア) 規則第25条の2第2項第3号ハ(イ)及び(ロ)に掲げる式の算定に当たっては、放送 設備の音声警報音の周波数帯域を勘案し、2キロヘルツにおける吸音率によるこ と。なお、残響時間の算定に当たっては、(7)イ(ア)に掲げるとおり500ヘルツに おける吸音率によること。
- (イ) 通常の使用形態において開放されている開口部(自動火災報知設備と連動して 閉鎖する防火戸が設けられている場合を含む。)の吸音率は0.8とすること。
- (ウ) 吸音率が異なる複数の建築材料が用いられている場合の平均吸音率は、次式により算定すること。(別紙1参照)

αは、平均吸音率

Snは、建築材料の面積(単位 平方メートル)

αnは、建築材料の吸音率


(6) 放送区域の壁、床及び天井又は屋根の面積の合計

ア意義

放送区域の壁、床及び天井又は屋根の面積の合計とは、当該放送区域を区画する壁、床及び天井又は屋根のほか、これらに存する開口部を含めた面積の合計をいうこと。

イ 運用

通常の使用形態において複数階の部分と一体的な空間をなすアトリウム等が存する場合にあっては、防火区画を形成するための防火シャッター等の位置により、階ごとに放送区域を設定すること。

(7) 残響時間

ア意義

残響時間とは、放送区域内の音圧レベルが定常状態にあるとき、音源停止後から6 0デシベル小さくなるまでの時間をいうこと。

イ 運用

残響時間は、厳密には放送区域の区画の構造、使用されている個々の内装材、収納物等の種類(吸音率)及び面積、入射音の周波数等により異なる値をとるものであるが、(5)イ((ア)を除く)及び(6)イによるほか、次により取扱うこと。

- (ア) 残響時間は、500ヘルツにおける値とすること。
- (イ) 残響時間は、次式により算定すること。

Tは、残響時間(単位 秒)

Vは、放送区域の体積(単位 立方メートル)

Sは、放送区域の壁、床及び天井又は屋根の面積の合計(単位 平方メートル)

αは、放送区域の平均吸音率

2 スピーカーの設置方法について

スピーカーの設置方法については、規則第25条の2第2項第3号ハの規定によるほか、次によること。

(1) 全般的な規定の趣旨等

ア 規定の趣旨

- (ア) 規則第25条の2第2項第3号ハ(イ)及び(ロ)の規定は、階段又は傾斜路以外の場所(居室、廊下等)における警報内容の伝達に必要な音量及び明瞭度の判断基準を定めたものであること。したがって、スピーカー仕様や設置間隔を具体的に定めた同号イ及びロの規定と異なり、所要の音量及び明瞭度を確保することができれば、設置するスピーカーの仕様や放送区域内の配置については、自由に選択することができること。
- (イ) 規則第25条の2第2項第3号ハ(ハ)の規定は、階段又は傾斜路におけるスピーカーの設置方法を定めたものであり、内容的には同号ロ(ハ)の規定と同一であること。

イ 運用

- (ア) 規則第25条の2第2項第3号ハ(イ)及び(ロ)を適用する場合には、計画段階において計算により設置するスピーカーの仕様や放送区域内の配置を決定することとなることから、竣工時における基準適合性を確保するためには、余裕をもった設計を行う必要があること。また、放送区域内の収納物等についても、これらの影響により実際の音量や明瞭度が著しく変化する場合があるので、設計に当たり留意する必要があること。
- (イ) スピーカーの設置方法を選択するに当たり、一の放送区域において規則第25条 の2第2項第3号イ及びロの規定と同号ハの規定を併用することは認められないも のであること。

また、同号ハの規定に基づきスピーカーを設置した放送区域に隣接する放送区域について、同号ロ(ロ)ただし書の規定によりスピーカーの設置を免除することは、警報内容の伝達に必要な音量及び明瞭度が確保されないおそれがあることから、一般的には認められないこと。ただし、透過損失の影響等を考慮のうえ、(3)イ(ア)に掲げる手法等により所要の音量及び明瞭度が得られると認められる場合にあっては、この限りでない。

(ウ) 防火区画を形成するための防火シャッター等が存する場合にあっても、通常の 使用形態において区画されていなければ、一般的には一の放送区域として取り扱 われる(1(6)イに掲げる場合等を除く)ものであるが、スピーカーの設置に当た っては、当該防火シャッター等の閉鎖時にも警報内容の伝達に必要な音量及び明 瞭度が得られるよう留意する必要があること。

(エ) 防火対象物の増築、改築、間仕切変更等の際には、スピーカーの設置に係る基準適合性を確認する必要があること。この場合において、規則第25条の2第2項第3号ハの規定により所要の音量及び明瞭度が確保されているときは、スピーカーの増設、移設等の措置を講じる必要はないこと。

(2) 音量の確保

ア 規定の趣旨

(ア) 音量の確保の観点から、規則第25条の2第2項第3号ハ(イ)の規定により、スピーカーは、放送区域ごとに、次の式により求めた音圧レベルが当該放送区域の床面からの高さが1メートルの箇所において75デシベル以上となるように設けることとされていること。(別紙2参照)

Pは、音圧レベル(単位 デシベル)

pは、スピーカーの音響パワーレベル(単位 デシベル)

Qは、スピーカーの指向係数

rは、当該箇所からスピーカーまでの距離(単位 メートル)

αは、放送区域の平均吸音率

Sは、放送区域の壁、床及び天井又は屋根の面積の合計(単位 平方メートル)

(イ) 当該規定は、スピーカーからの放送を受聴する代表的な位置(=床面からの高さが1メートルの箇所)において、警報内容の伝達に必要な音量(=75デシベルの音圧レベル。就寝中の人を起こすために最低必要な音量に相当)を確保することを趣旨とするものであること。

イ 運用

音圧レベルの算定については、スピーカーから放射された直接音(=スピーカーの音響パワーレベル)の当該方向への配分及び距離減衰(=Q/ $4\pi r^2$)と放送区域内における反射音(=4($1-\alpha$)/S α)によることとしているが、実際に測定を行った場合においても、75デシベル以上の音量が確保される必要があること。

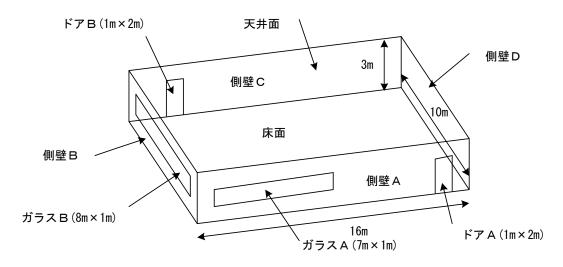
(3) 明瞭度の確保

ア規定の趣旨

(ア) 明瞭度の確保の観点から、規則第25条の2第2項第3号ハ(ロ)の規定により、スピーカーは、当該放送区域の残響時間が3秒以上となるときは、当該放送区域の床面からの高さが1メートルの箇所から一のスピーカーまでの距離が次の式により求めた値以下となるように設けることとされていること。

- rは、当該箇所からスピーカーまでの距離(単位、メートル)
- Qは、スピーカーの指向係数
- Sは、放送区域の壁、床及び天井又は屋根の面積の合計(単位 平方メートル)
- αは、放送区域の平均吸音率
- (イ) 当該規定は、残響によりメッセージの明瞭度が著しく低下するおそれのある放送区域(=残響時間3秒以上)について、スピーカーからの放送を受聴する代表的な位置(床面からの高さが1メートルの箇所)において、警報内容の伝達に必要な明瞭度を確保することを旨とするものであること。また、距離の算定については、明瞭度確保の判断基準として一般に用いられている、臨界距離(直接音と反射音の強さが等しくなる距離をいう。)の3倍によるものであること。

イ 運用


- (ア) 明瞭度については、規則第25条の2第2項第3号ハ(ロ)の規定によるほか、IEC (国際電気標準会議) 268-16のSTI (Speech Transmission Index)、RASTI (Rapid Speech Transmission Index)等の手法により確認されたものについても認めてさしつかえないこと。
- (イ) 一のスピーカーにより10メートルを超える範囲を包含することとなる場合であって、当該放送区域の残響時間が比較的長い放送区域(残響時間が概ね1秒以上)や大空間の放送区域(一辺が概ね20メートル以上のホール、体育館、物品販売店舗の売場、間仕切の少ないオフィスビルの事務室等)である時には、規則第25条の2第2項第3号ハ(ロ)の規定や(ア)に掲げる手法等の例により、避難経路等を中心として明瞭度の確保を図ることが望ましいこと。

第3 具体的な設置例について

規則第25条の2第2項第3号ハの規定に基づき放送設備のスピーカーを設置する場合の 具体例は、別紙3のとおりである。

なお、警報内容の伝達に必要な音量及び明瞭度を確保するための要件(スピーカーの 仕様、配置等)は、個別の放送区域ごとに異なるものであることから、設計を行うに当た っての参考として活用されたい。

平均吸音率の計算例

[図1]室概要

[表1]建築材料および吸音力計算表

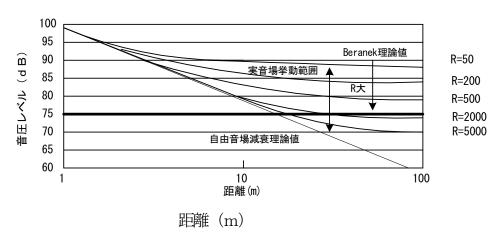
名称	面積S(m²)	建築材料	材料吸	音率α	材料吸	音力Sα
			500Hz	2 kHz	500Hz	2 kHz
床面	$16 \times 10 = 160$	根太床(チーク寄木張り)	0. 12	0.09	19. 20	14. 40
天井面	$16 \times 10 = 160$	孔あき9mm石膏ボード	0. 25	0. 23	40.00	36. 80
側壁A	16×3-7×1-1×2=39	コンクリート打ち放し	0.02	0.03	0. 78	1. 17
側壁B	$10 \times 3 - 8 \times 1 = 22$	同上	0.05	0.03	1. 10	0.66
側壁C	$16 \times 3 - 1 \times 2 = 46$	同上	0.05	0.03	2. 30	1.38
側壁D	$10 \times 3 = 30$	同上	0.05	0.03	1. 50	0.90
ガラスA	$7 \times 1 = 7$	ガラス窓(木製サッシ)	0. 18	0.07	1. 26	0.49
ガラスB	$8 \times 1 = 8$	同上	0. 18	0.07	1. 44	0. 56
ドアA	$1 \times 2 = 2$	扉(ヒニールサーふとん張り)	0. 20	0.30	0.40	0.60
ドアB	$1 \times 2 = 2$	同上	0. 20	0.30	0.40	0.60
合計	476	_	_	_	68.38	57. 56

[表1]より、平均吸音率は、2キロヘルツにおける場合で計算する。

 $\alpha = (S \alpha) TOTAL/S=57.56/476=0.21 2kHz$

また予測残響時間は、500~ルツにおける場合で計算する。

T=0. $161 \times V/S$ α =0. $161 \times 16 \times 10 \times 3/68$. 38=1. 13 500H z


[参考]主建築材料の吸音率の一例

	125Hz	250Hz	500Hz	1 kHz	2 kHz	4 kHz
コンクリート打ち放し	0. 01	0.01	0.02	0.02	0.03	0.04

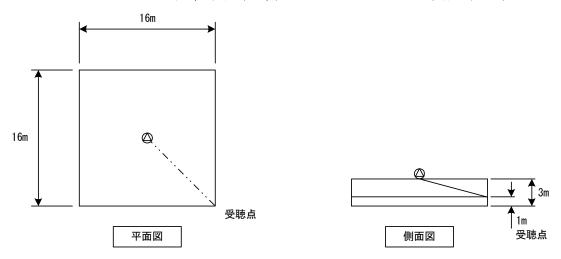
ビニール系タイル	0. 01	0.02	0.02	0.02	0.03	0.04
ガラス(木製サッシュ)	0.35	0. 25	0. 18	0. 12	0.07	0.04
パイルカーペット10mm	0.09	0.08	0. 21	0. 26	0. 27	0. 37
石膏ボード7mm空気層45mm	0. 26	0.14	0.09	0.06	0.05	0.05
ベニヤ板12mm空気層45mm	0. 25	0. 14	0.07	0. 04	0. 1	0.08
根太床(チーク寄木張り)	0. 16	0. 14	0. 12	0. 11	0. 09	0. 07

Beranekの理論式に基づく室内における音源の距離減衰グラフ

パワーレベル100 d B、Q=10の場合の例

*R (室定数)

R(室定数)は、室の表面積Sおよび平均吸音率 α によって定められ、下式で定義される。


〈事務所の会議室①〉

1 放送区域の概要及びスピーカーの仕様

放送区域の用途	事務所の会議室
	天井:ロックウール化粧吸音板
内装仕様	床:ニードルパンチカーペット
	壁:石膏ボード、ガラス
放送区域の寸法	間口16メートル、奥行き16メートル、高さ3.0
	メートル
放送区域の壁、床の面積の合計	704平方メートル
放送区域の体積	768立方メートル
放送区域の平均吸音率	0.20 (500Hz) 、0.39 (2kHz)
スピーカーの音響パワーレベル	97デシベル
スピーカーの指向係数	指向特性区分W0.8

2 残響時間

- 3 スピーカーの配置
 - 受聴点における音圧レベル (距離11.5m)
 - スピーカーの配置図 (天井埋込スピーカーを使用する)

4 メリット

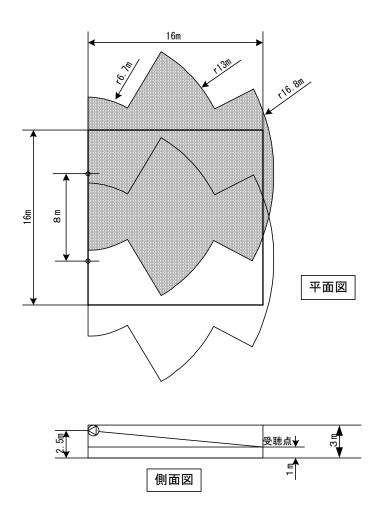
○ 残響時間の短い放送区域であり、かつ、音圧レベルも確保できるので、

別紙3-2

〈事務所の会議室②〉

1 放送区域の概要及びスピーカーの仕様

放送区域の用途	事務所の会議室	
	天井:ロックウール化粧吸音板	
内装仕様	床:塩化ビニルタイル	
	壁:コンクリート、ガラス	
放送区域の寸法	間口16メートル、奥行き16メートル、高さ3メ	
放送区域の自伝	ートル	
放送区域の壁、床の面積の合	704 m²	
計	704III	
放送区域の体積	$768\mathrm{m}^3$	
放送区域の平均吸音率	0.17 (500Hz) 、0.31 (2kHz)	
スピーカーの音響パワーレ	97デシベル	
ベル		
スピーカーの指向係数	指向特性区分W	


2 残響時間

3 スピーカーの配置

○ 1つのスピーカーで10メートルを超える範囲を包含する場合であって、残響時間が1秒以上であるときには、明瞭度の確保を図ることが望ましい。したがって、スピーカーは次式で求めるrの値以下の距離となるように設置することになる。

角度(°)	0°~15°未満	15°以上30°未満	30°以上60°未満	60°以上90°未満
Q	5	5	3	0.8
r (m)	16. 8	16.8	13. 0	6. 7

○ スピーカーの配置図 (壁掛型スピーカーを使用する)

○ rの地点での音圧レベル

となり、r以内のエリアでは75dBを満足する。

4 メリット

○ rの距離内に受聴点を配置することから、明瞭度が向上する。

別紙3-3

〈ホテルの客室、廊下〉

1 放送区域の概要及びスピーカーの仕様

放送区域の用途	ホテルの宿泊室と廊下
内装仕様	天井:孔あき石膏ボード、壁:モルタル、床:パイル
	カーペット
放送区域の寸法	(図による)
放送区域の壁、床等内面積の合計	廊下1=320平方メートル 廊下2=441平方メートル
	客室(最大室)=112平方メートル
放送区域の体積	廊下1=188立方メートル 廊下2=262立方メートル
	客室(最大室)=76立方メートル
放送区域の平均吸音率 (500Hz)	廊下1=0.14 廊下2=0.14 客室(最大室)=0.25
放送区域の平均吸音率 (2 kHz)	廊下1=0.11 廊下2=0.11 客室(最大室)=0.22
スピーカーの音響パワーレベル	97デシベル
スピーカーの指向係数	指向特性区分 W

2 残響時間

T=0.161 \times V/ (S \times α) \updownarrow ϑ

廊下 1 T=0.161×188/ (320×0.14) =0.67秒

廊下 2 T=0.161×262/(441×0.14)=0.68秒

客室 T=0.161×76/(112×0.25)=0.44秒

3 スピーカーの配置

避難経路である廊下が20m以上の空間となるため明瞭度を重視したスピーカー配置とすると、次式で求めるrの値以下の距離となるように設置することとなる。

 $r=3/4\times\sqrt{}$ (Q × S × α / (π × (1- α))) \sharp ϑ

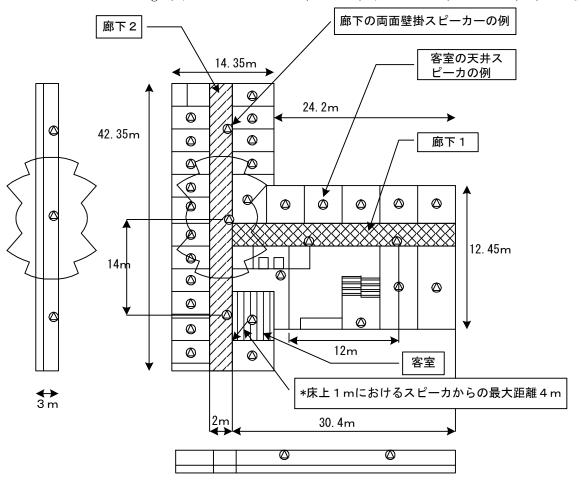
角度(°)	0°~15°未満	15°以上30°未満	30°以上60°未満	60°以上90°以下
Q	5	5	3	0.8
廊下1 r (m)	6.06	6.06	4. 7	2.43
廊下2 r (m)	7.06	7.06	5. 47	2.82
客室 r (m)	5. 43	5. 43	4. 21	2. 17

○ 受聴点における音圧レベル

スピーカーからの最大距離点における音圧レベルの計算は、

 $P=p+10\times\log (Q/4\times\pi\times r^2+4\times (1-\alpha)/S\times\alpha \ \ \ \ \ \)$

〈廊下1の場合〉


 $P=97+10\times\log (5/4\times\pi\times6^{2}+4\times (1-0.11)/320\times0.11) = 91.4 \text{ (dB)}$

〈廊下2の場合〉

 $P=97+10 \times \log (5/4 \times \pi \times 7^{2}+4 \times (1-0.11)/441 \times 0.11) = 90.1 \text{ (dB)}$

〈客室の場合〉

 $P=97+10\times \log (3/4\times \pi \times 4^2+4\times (1-0.22)/83\times 0.22)=93.6$ (dB) となる。

メリット (廊下の場合)

軸方向を受聴方向に向けられる事から、明瞭度が向上する。

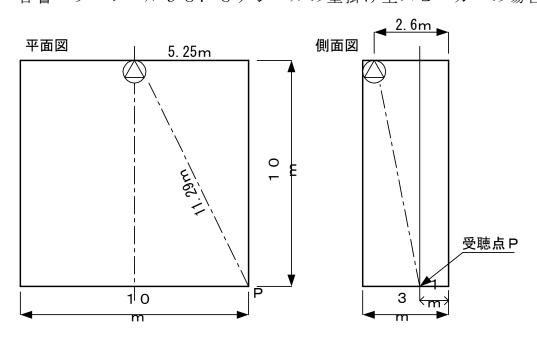
〈学校の教室〉

1 放送区域の概要及びスピーカーの仕様

放送区域の用途	学校の教室
放送区域の寸法	間口10メートル、奥行き10メートル、高さ
	3メートル
放送区域の壁、床の面積の合計	320平方メートル
放送区域の体積	300平方メートル
内装仕様	天井:穴あき石膏ボード、床:板貼
	り、壁:黒板、ガラス、板貼りドア
	等
放送区域の平均吸音率	0.15 (2 kHz) 、0.20 (500Hz)
スピーカーの音響パワーレベル	98.8デシベル
スピーカーの指向係数	指向特性区分 W5

2 残響時間

T=0.161×V/ (Sα500HZ) =0.161×300/ (320×0.20) =0.75秒


- 3 スピーカー配置
 - 受聴点における音圧レベル

P=p+10 log { Q/4 π r 2 +4(1- α 2 k H z)/S α 2 k H z } スピーカーからの最長距離 P 地点の音圧レベル P=98.8+10 log{5/4・ π ・(11.4) 2 +4・(1-0.15)/320・0.15}

=87.4dB

○ スピーカーの配置図 (平面図及び側面図)

音響パワーレベル98.8デシベルの壁掛け型スピーカーの場合

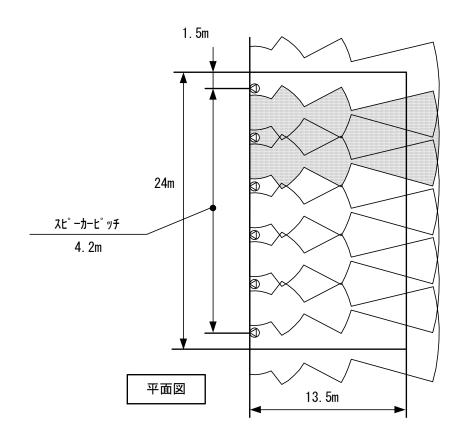
4 メリット

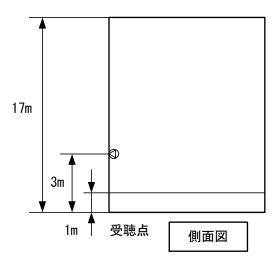
○ 残響時間の短い放送区域で、音圧レベルも確保できるので、1つの スピーカーにより10メートルを超える範囲をカバーできる。

〈アトリウム〉

1 放送区域の概要及びスピーカーの仕様

放送区域の用途	アトリウム
内装仕様	天井:ガラス、床:大理石、壁:大理石、ガラ
	ス
放送区域の寸法	間口13.5メートル、奥行き24メートル、高さ17メートル
放送区域の壁、床の面積の合計	1,923平方メートル
放送区域の体積	5,508立方メートル
放送区域の平均吸音率	0.08 (500Hz) 、0.07 (2kHz)
スピーカーの音響パワーレベル	100デシベル
スピーカーの指向係数	指向特性区分 M


2 残響時間


3 スピーカーの配置

○ 残響時間が3秒以上のため、スピーカーまでの距離は次式で求める rの値以下となるように設置する必要がある。

角度(°)	0°~15°未満	15°以上30°未満	30°以上60°未満	60°以上90°以下
Q	10	3	1	0.5
r (m)	16. 1	8.8	5. 1	3.6

○スピーカーの配置 (ホーン型コーンスピーカーを使用する)

○ rの地点での音圧レベル

となり、r以内のエリアでは75dBを満足する。

4 メリット

○ rの距離内に受聴点を配置することから、明瞭度が確保される。

〈地下駐車場〉

1 放送区域の概要及びスピーカーの仕様

放送区域の用途	地下駐車場
内装仕様	天井:コンクリート、壁:コンクリート、床:
	コンクリート
放送区域の寸法	間口76.5メートル、奥行き43メートル、高さ4.2メートル
放送区域の壁、床等内面積の合計	8,149.8平方メートル
放送区域の体積	13,816立方メートル
放送区域の平均吸音率 (500Hz)	0.03
放送区域の平均吸音率(2kHz)	0.03
スピーカーの音響パワーレベル	97デシベル
スピーカーの指向係数	指向特性区分 W

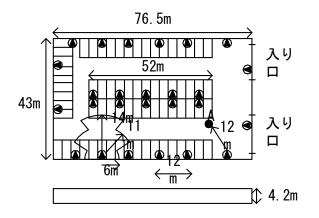
2 残響時間

 $T=0.161\times V/(S\times\alpha)$ \sharp ϑ

T=0.161×13816/ (8149.8×0.03) =9.1秒

上記結果から、残響時間が3秒以上の為、明瞭度を確保する必要がある。

3 明瞭度を確保する計算式


$$r=3/4 \times \sqrt{ (Q \times S \times \alpha / (\pi \times (1-\alpha)))}$$
 より
コーン型スピーカーの場合は、

角度 (°)	0°~15°未満	15°以上30°未満	30°以上60°未満	60°以上90°以下
Q	5	5	3	0.8
距離 r (m)	14	14	11	6

4 受聴点における音圧レベルの計算

スピーカーからの最大距離点(下図A点)における音圧レベルの 計算は、

P=p+10×log (Q/4×π×r²+4× (1-α)/S×α) より、 P=97+10×log (5/4×π×12²+4× (1-0.03)/8149.8×0.03) =79.4 (dB) となる。

メリット

1 到達距離内に受聴点を配置することから、明瞭度が向上する。